

# Word Embeddings for Entity-annotated Texts

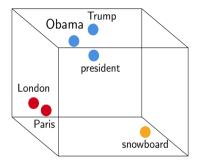
Satya Almasian, Andreas Spitz and Michael Gertz

April 16, 2019

Heidelberg University Institute of Computer Science Database Systems Research Group almasian@stud.uni-heidelberg.de

## Motivation

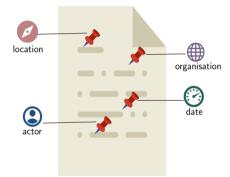
## Word Embeddings



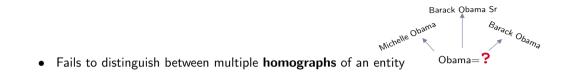
#### Word Embeddings:

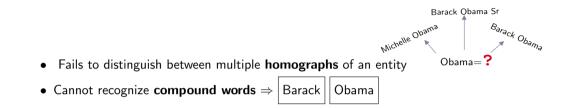
- Word represented as vectors of real numbers
- Words with similar meaning  $\Rightarrow$  mapped to the nearby points

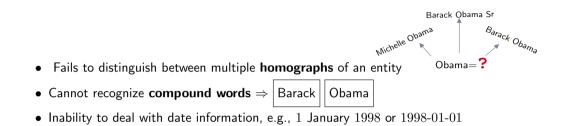
### What about Named Entities?

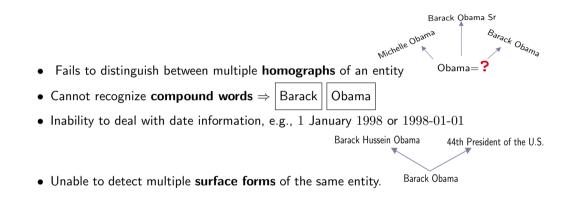


- Named entities: Words that belong to a set of pre-defined classes (person, location, organisation ...).
- Normal word embeddings
   ⇒ treat all the words equally









## **Entity Embeddings**

Annotate given text with named entities

Annotate given text with named entities

Training state-of-the-art word embedding (word2vec, GloVe) on annotated text

Annotate given text with named entities

Training state-of-the-art word embedding (word2vec, GloVe) on annotated text

1. Extract word co-occurrence graph from text 2. Embed the nodes of the co-occurrence graph with node embedding models (DeepWalk, VERSE)

President Trump participated in dubious tax schemes during the 1990s, which The New York Times investigated.

President Trump participated in dubious tax schemes during the 1990s, which The New York Times investigated.

POS Tagging Entity Recognition Entity Linking

President Trump participated in dubious tax schemes during the 1990s, which The New York Times investigated.

POS Tagging Entity Recognition Entity Linking 
 PER.645
 TER.1116

 TER.19557
 TER.1949

 TER.22597
 TER.1410

 DAT.268
 TER.3079

 ORG.1310
 TER.8100

President Trump participated in dubious tax schemes during the 1990s, which The New York Times investigated.

POS Tagging Entity Recognition Entity Linking 
 PER.645
 TER.1116

 TER.19557
 TER.1949

 TER.22597
 TER.1410

 DAT.268
 TER.3079

 ORG.1310
 TER.8100

Word Embedding Models (GloVe, word2vec)

President Trump participated in dubious tax schemes during the 1990s, which The New York Times investigated.

POS Tagging Entity Recognition Entity Linking 
 PER.645
 TER.1116

 TER.19557
 TER.1949

 TER.22597
 TER.1410

 DAT.268
 TER.3079

 ORG.1310
 TER.8100

Word Embedding Models (GloVe, word2vec)

|          | Dimensions |       |      |      |      |  |  |
|----------|------------|-------|------|------|------|--|--|
| PER_645  | -0.1       | -0.31 | 0.13 | 0.7  | 1.3  |  |  |
| TER_1949 | 0.1        | 1.23  | 8.7  | 4.7  | 0.2  |  |  |
| DAT_268  | -0.41      | -2.31 | -0.6 | 0.7  | -0.1 |  |  |
| ORG_1310 | 2.1        | 4.31  | 0.53 | -0.7 | 0.9  |  |  |
| :        | :          | :     | :    | :    | :    |  |  |

|  | 2019 |  |
|--|------|--|
|  |      |  |
|  |      |  |

**President Trump** participated in dubious tax schemes during the 1990s, including instances of outright fraud, that greatly increased the fortune he received from his parents, an investigation by The New York Times has found. He won the presidency proclaiming himself a self-made billionaire, and he has long insisted that his father, the legendary New York City builder **Fred C. Trump**, provided almost no financial help.

Sentences: 2

Words: 53

• Entity-entity relations are captured better using sentence-based distances.

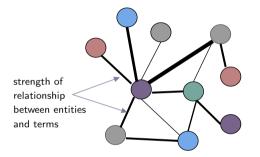
**President Trump** participated in dubious tax schemes during the 1990s, including instances of outright fraud, that greatly increased the fortune he received from his parents, an investigation by The New York Times has found. He won the presidency proclaiming himself a self-made billionaire, and he has long insisted that his father, the legendary New York City builder **Fred C. Trump**, provided almost no financial help.

Sentences: 2

Words: 53

- Entity-entity relations are captured better using sentence-based distances.
- Terms are less likely to be related to entities outside of their own sentence.

## Weighted Entity Co-occurrence Graph

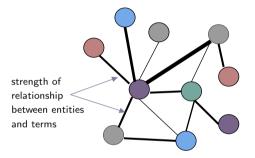


• Represents a document collection as an entity co-occurrence graph <sup>1</sup>

<sup>1</sup>Spitz, A., Gertz, M.: Terms over LOAD: Leveraging Named Entities for Cross-Document Extraction and Summarization of Events. SIGIR 2016.

April 16, 2019 Satya Almasian, Andreas Spitz and Michael Gertz

## Weighted Entity Co-occurrence Graph



- Represents a document collection as an entity co-occurrence graph <sup>1</sup>
- Entity-entity relations  $\Rightarrow$  sentence-based weighting function
- **Entity-term** relations  $\Rightarrow$  **word-based** weighting function

April 16, 2019

<sup>&</sup>lt;sup>1</sup>Spitz, A., Gertz, M.: Terms over LOAD: Leveraging Named Entities for Cross-Document Extraction and Summarization of Events. SIGIR 2016.

President Trump participated in dubious tax schemes during the 1990s, which The New York Times investigated.

President Trump participated in dubious tax schemes during the 1990s, which The New York Times investigated.

POS Tagging Entity Recognition Entity Linking ACT\_645 TER\_1116 TER\_19557 TER\_1949 TER\_22597 TER\_1410 DAT\_268 TER\_3079 ORG\_1310 TER\_8100

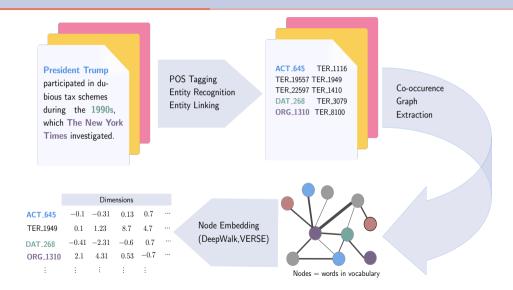
President Trump participated in dubious tax schemes during the 1990s, which The New York Times investigated.

POS Tagging Entity Recognition Entity Linking ACT\_645 TER\_1116 TER\_19557 TER\_1949 TER\_22597 TER\_1410 DAT\_268 TER\_3079 ORG\_1310 TER\_8100

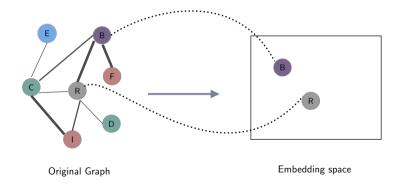
Co-occurence Graph Extraction

Nodes = words in vocabulary

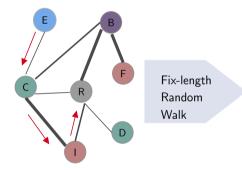
April 16, 2019



• Encode nodes so that similarity in the embedding space approximates similarity in the original network.

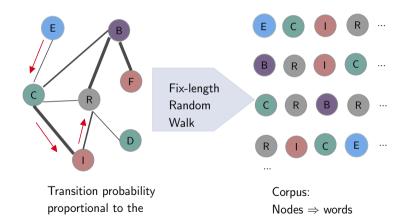


DeepWalk (Perozzi et al.):



Transition probability proportional to the edge weights

DeepWalk (Perozzi et al.):

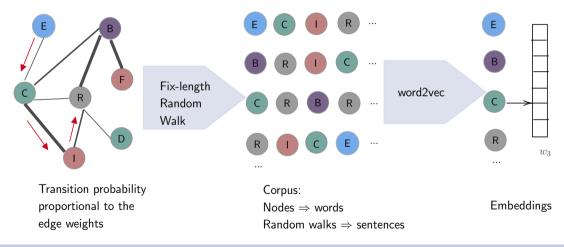


April 16, 2019 Sat

edge weights

Random walks  $\Rightarrow$  sentences

DeepWalk (Perozzi et al.):

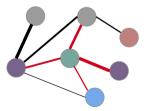


• Learns embeddings by training a single-layer neural network

- Learns embeddings by training a single-layer neural network
- Accepts diverse similarity measures

- Learns embeddings by training a single-layer neural network
- Accepts diverse similarity measures
- Minimizes **KL-divergence** from the given similarity distribution  $sim_G$  to similarity in embedding space  $sim_E$ 
  - $\sum_{v \in V} KL(sim_G(v,.), sim_E(v,.))$

- Learns embeddings by training a single-layer neural network
- Accepts diverse similarity measures
- Minimizes **KL-divergence** from the given similarity distribution  $sim_G$  to similarity in embedding space  $sim_E$ 
  - $\sum_{v \in V} KL(sim_G(v,.), sim_E(v,.))$
- We choose Adjacency Similarity as our similarity measure



Only the immediate neighbors are taken into account

## **Evaluation**

#### **Relatedness or Similarity:**

- Datasets containing scores for:
   ⇒ relatedness: association of words
   ⇒ similarity: degree of synonymity
- The cosine similarity should have a high correlation with human scores.

#### Analogy:

- Datasets containing:
  - $\Rightarrow$  word pairs with similar relations
- Task: Given (a, b, x), find y where, x : y resembles a : b
- Berlin is to Germany, as London is to ?  $\rightarrow$  England

#### Data

Training: Co-occurence graph, 200K english news articles, 93K nodes, from June to November 2016

Testing:

- 4 Similiarity datasets
- 3 Relatedness datasets
- 2 Analogy datasets

9 million edges

**Correlation** with human judgements:

|                  | raw text |       | annotated text |       |          |       |  |
|------------------|----------|-------|----------------|-------|----------|-------|--|
| Datasets         | word2vec | GloVe | word2vec       | GloVe | DeepWalk | VERSE |  |
| Word Similarity  | 0.551    | 0.410 | 0.550          | 0.394 | 0.434    | 0.492 |  |
| Word Relatedness | 0.491    | 0.378 | 0.490          | 0.380 | 0.432    | 0.510 |  |
| average          | 0.526    | 0.400 | 0.524          | 0.389 | 0.433    | 0.500 |  |

• Performance of word embedding models degrades after annotation.

Correlation with human judgements:

|                  | raw text |       | annotated text |       |          |       |
|------------------|----------|-------|----------------|-------|----------|-------|
| Datasets         | word2vec | GloVe | word2vec       | GloVe | DeepWalk | VERSE |
| Word Similarity  | 0.551    | 0.410 | 0.550          | 0.394 | 0.434    | 0.492 |
| Word Relatedness | 0.491    | 0.378 | 0.490          | 0.380 | 0.432    | 0.510 |
| average          | 0.526    | 0.400 | 0.524          | 0.389 | 0.433    | 0.500 |

- Performance of word embedding models degrades after annotation.
- Graph-based embeddings (VERSE)  $\Rightarrow$  better for relatedness tasks
- Normal word embeddings (word2vec)  $\Rightarrow$  better for similarity tasks.

# Analogy

Accuracy of prediction:

|                    | raw text |       | annotated text |       |          |       |
|--------------------|----------|-------|----------------|-------|----------|-------|
| Datasets           | word2vec | GloVe | word2vec       | GloVe | DeepWalk | VERSE |
| Google Analogy     | 0.013    | 0.019 | 0.003          | 0.015 | 0.009    | 0.035 |
| Microsoft Research | 0.014    | 0.019 | 0.001          | 0.014 | 0.002    | 0.012 |
| average            | 0.013    | 0.019 | 0.002          | 0.014 | 0.005    | 0.023 |

- Graph-based embedding (VERSE)  $\Rightarrow$  better for datasets containing named entities
- Normal word embedding (GloVe)  $\Rightarrow$  better for term-based datasets

# Analogy

Accuracy of prediction:

|                    | raw text |       | annotated text |       |          |       |
|--------------------|----------|-------|----------------|-------|----------|-------|
| Datasets           | word2vec | GloVe | word2vec       | GloVe | DeepWalk | VERSE |
| Google Analogy     | 0.013    | 0.019 | 0.003          | 0.015 | 0.009    | 0.035 |
| Microsoft Research | 0.014    | 0.019 | 0.001          | 0.014 | 0.002    | 0.012 |
| average            | 0.013    | 0.019 | 0.002          | 0.014 | 0.005    | 0.023 |

- Graph-based embedding (VERSE)  $\Rightarrow$  better for datasets containing named entities
- Normal word embedding (GloVe)  $\Rightarrow$  better for term-based datasets
- Typed search: Only look at candidates that share the same type as entities in question
  - Entity-centric (location) questions: VERSE predicts 1,662 (24.1%)
  - word2vec  $\Rightarrow 14 (0.20\%)$  and GloVe  $\Rightarrow 16 (0.23\%)$ .



# Conclusion

#### **Conclusion: Usability of Embeddings**

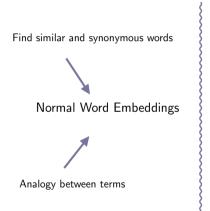
When to use which embedding for which task?

Normal Word Embeddings

Graph-based Embeddings

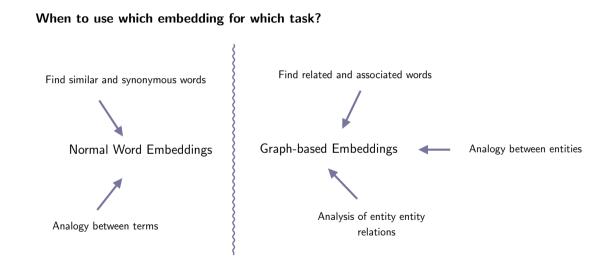
### **Conclusion: Usability of Embeddings**

When to use which embedding for which task?



#### Graph-based Embeddings

### **Conclusion: Usability of Embeddings**



- Use embeddings as **input features** for entity-centric tasks that benefit from relatedness relations
  - $\bullet \ \Rightarrow \mathsf{Query} \ \mathsf{expansion}$
  - $\bullet \ \Rightarrow$  Name entity recognition and linkage

- Use embeddings as **input features** for entity-centric tasks that benefit from relatedness relations
  - $\bullet \ \Rightarrow \mathsf{Query} \ \mathsf{expansion}$
  - $\bullet \ \Rightarrow \mathsf{Name \ entity \ recognition \ and \ linkage}$
- Creating datasets containing named entities for evaluation tasks

The code: https://github.com/satya77/Entity\_Embedding

